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ABSTRACT

Instabilities play a critical role in understanding atmospheric predictability and improving weather fore-
casting. The bred vectors (BVs) are dynamically evolved and flow-dependent nonlinear perturbations, in-
dicating the most unstable modes of the underlying flow. Especially over smaller areas, however, BVs with
different initial seeds may to some extent be constrained to a small subspace, missing potential forecast error
growth along other unstable perturbation directions.

In this paper, the authors study the nonlinear local Lyapunov vectors (NLLVs) that are designed to capture
an orthogonal basis spanning the most unstable perturbation subspace, thus potentially ameliorating the
limitation of BVs. The NLLVs are theoretically related to the linear Lyapunov vectors (LVs), which also form
an orthogonal basis. Like BVs, NLLVs are generated by dynamically evolving perturbations with a full
nonlinear model. In simulated forecast experiments, a set of mutually orthogonal NLLVs show an advantage
in predicting the structure of forecast error growth when compared to using a set of BVs that are not fully
independent. NLLVs are also found to have a higher local dimension, enabling them to better capture lo-
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calized instabilities, leading to increased ensemble spread.

1. Introduction

Because of the chaotic nature of the atmosphere, nu-
merical weather prediction (NWP) will inevitably diverge
from the evolution of the true state of the atmosphere,
limiting predictability (Lorenz 1963a,b; Ruelle and Takens
1971; Li and Chou 1997). Predictability research explores
instabilities of the system that are responsible, along with
model errors for the fast growth of forecast errors. Un-
derstanding the growth of unstable errors is critical to
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improvements in NWP. For example, the ingestion of
supplementary observations over carefully chosen dy-
namically unstable regions can reduce analysis and ensuing
forecast uncertainties (Lorenz and Emanuel 1998; Bishop
and Toth 1999; Bishop et al. 2001; Mu 2013), fast-growing
perturbations (perts) can be used to define background
forecast error covariance in data assimilation (DA) algo-
rithms (Trevisan and Uboldi 2004; Uboldi et al. 2005), and
dynamically conditioned growing perturbations are used in
ensemble forecasting to capture analysis—forecast error
development (e.g., Toth and Kalnay 1993, 1997; Molteni
and Palmer 1993; Molteni et al. 1996).
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Various methods have been proposed to characterize
the instabilities of chaotic systems, including the atmo-
sphere. The leading Lyapunov vector (LV) defines the
fastest-growing linear perturbation at a certain time, toward
which any infinitesimal perturbation will converge after
long time evolution (Kalnay 2003). Other fast-growing
perturbation directions can be derived by evolving a set
of perturbations using the tangent linear model of a system
and conducting periodic orthogonalization (Benettin et al.
1980; Wolf et al. 1985; Kalnay 2003). Bred vectors (BVs;
Toth and Kalnay 1993) sample the subspace of fastest-
growing finite-amplitude perturbations. They are captured
by following the periodically rescaled evolution of pertur-
bations between two nonlinear forecasts. As such, BVs can
be considered as the nonlinear extension of the leading LV
(Toth and Kalnay 1997; Kalnay et al. 2002). Perturbation
size can be controlled by the choice of the rescaling period
and amplitude. In complex dynamical systems, BVs are
associated with instabilities characterized by the fastest
perturbation growth in the selected amplitude range (Toth
and Kalnay 1997). For example, at amplitudes in the range
of error variance of today’s NWP initial conditions (i.e.,
analysis fields), BVs strongly project onto baroclinic in-
stabilities (Toth and Kalnay 1997; Corazza et al. 2003; Wei
and Frederiksen 2004), while convective instabilities dom-
inate at much lower perturbation amplitudes (Toth and
Kalnay 1997). The BV approach has been widely applied in
NWP because of its conceptual simplicity and computa-
tional efficiency.

By definition, singular vectors (SVs) are the linearly
fastest-growing perturbations over a specified time pe-
riod, measured with a specific preselected norm
(Molteni and Palmer 1993; Molteni et al. 1996). Unlike
LVs that represent temporally sustainable behavior,
SVs explore transitional behavior (Szunyogh et al.
1997). Their growth exhibits apparent “‘super Lyapu-
nov”’ growth because of fast-decaying, trailing L'Vs that
at initial time make part of the growing perturbation
structure “invisible” through the chosen norm (Toth
et al. 1999). Hence, growth over the selected period,
only when evaluated via the chosen norm, appears
very large. Despite their more specific definition and
significantly higher computational costs, SVs have been
widely used in predictability studies. Mu et al. (2003)
proposed a nonlinear extension of the SVs, called con-
ditional nonlinear optimal perturbations (CNOPs).
CNOPs have been successfully applied to analyze re-
gions of sensitive error growth (Duan et al. 2004; Mu
et al. 2007; Mu et al. 2009; Zhang et al. 2015). Beyond
these basic and widely used tools, a variety of other
methods has also been proposed to study instabilities
and associated predictability, both from theoretical
and more practical perspectives.
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As for BVs, when multiple vectors (each started with a
different initial seed perturbation) are computed, they
evolve into globally quasi-independent and similarly
fast-growing perturbations (Toth and Kalnay 1997).
This is partly due to stochastic effects arising from
nonlinear perturbation evolution. Previous studies also
found, however, that multiple independently run BV
perturbations regionally collapse into a small subspace
in areas of high growth (Toth and Kalnay 1997). This
may result in an underestimation of the diversity in
plausible forecast error patterns (Wang and Bishop
2003; Bowler 2006), especially in regions with strong
instabilities (Patil et al. 2001, 2003). One may theorize
that the small subspace of the fastest-growing pertur-
bations sampled by the BVs may not capture all po-
tential error patterns in complex dynamical systems.

To mitigate the potential collapse of independently
run BV perturbations into an undesirably small subspace,
various forms of orthogonalization of the perturbations
have been explored. For example, Annan (2004) derived
the fastest-growing perturbation by comparing the
growth rates of orthogonal BVs.! Keller et al. (2010)
made singular-value decomposition to BVs to obtain the
independent dominated unstable perturbations. Primo
et al. (2008) introduced a new logarithm BV to increase
the diversity of the ensemble. Balci et al. (2012) used the
size of the largest member of BVs as the uniform scaling
of the ensemble. The ensemble transform Kalman filter
(ETKEF; Bishop et al. 2001; Wei et al. 2006) or the en-
semble transform with rescaling (ETR; Wei et al. 2008)
transform BVs to quasi-orthogonalized perturbations.
Feng et al. (2014, 2016) proposed a method analogous to
ETR called the nonlinear local Lyapunov vectors
(NLLVs). Although both the ETR and the NLLV
methods “‘breed” the perturbations to the unstable di-
rections during the forecast phase, they transform
the subspace of perturbations in different ways. The
former increases the diversity of perturbations by
multiplying a transformation matrix to the perturbation
matrix, while the NLLYV scheme uses the Gram-Schmidt
reorthonormalization (GSR) to orthogonalize the per-
turbations in cycles, separating independent perturbation
directions with different growth rates.

NLLVs are related to the spectrum of nonlinear local
Lyapunov exponents (NLLEs). Traditional or linear
Lyapunov exponents (LEs) measure the expansion or

! Note that the differences between the method in Annan (2004)
and the NLLV scheme is that the former orthogonalizes BVs and
compares their growth rates mainly to obtain the fastest-growing
perturbation rather than the overall fastest unstable perturbation
subspace. Meanwhile, the perturbations in the final breeding cycle
are not orthogonalized and thereby are not strictly independent.
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shrinking of infinitesimal perturbations averaged over the
entire phase-space domain of a dynamical system (i.e.,
the LVs; Oseledec 1968). Hence, LEs characterize only
the global and linear behavior of systems. Some sub-
sequent studies expanded the practical applications of
LEs by developing concepts for finite evolution time
(Abarbanel et al. 1991) or finite-size LEs (Aurell et al.
1997). In contrast, NLLESs are introduced to measure the
growth rate of finite-size perturbation along different
perturbation directions at a specific initial state within
finite evolution time (Ding and Li 2007; Li and Ding
2011). The leading NLLE can be used to estimate the
largest LE by taking their temporal mean (i.e., over the
entire attractor) if sufficiently small initial errors are used
(Chen et al. 2006; Ding and Li 2007; Li and Ding 2011,
2015), whereas NLLEs averaged over different initial
perturbations for any specific state offer a way to quantify
local predictability (Ding et al. 2008). Complex dynami-
cal systems are characterized by amplification rates that
vary with perturbation directions (Li and Wang 2008),
yielding a spectrum of NLLEs. The largest NLLE char-
acterizes the exponential growth rate of the leading
NLLV (LNLLV). The other exponents can be calculated
by introducing the subsequent independent NLLVs.
Theoretically, the BVs are an extension of the leading
LV, while the NLLVs are inherited from the leading LV
and other orthogonal LVs in a nonlinear framework.

Previous simple model studies (Feng et al. 2014, 2016)
limited their analysis to the properties of the global
NLLV perturbations, leaving the spatial structure and
other local properties of NLLVs unexplored. The NLLVs
are generated through the breeding technique like the
BVs. During the breeding, the stable perturbations will
diminish, while the unstable perturbations will amplify
and become dominated, making the perturbation pat-
terns (i.e., the BVs and the LNLLV) manifest the physical
instabilities in the model (Greybush et al. 2013). The
other NLLVs are similar to the BVs but reveal in-
stabilities on different directions. This paper will compare
how BVs and their enhanced counterpart, NLLVs, per-
form in numerical experiments in estimating the structure
of forecast error amplification while studying localized
instabilities as the underlying mechanism. Such a study
will provide a foundation for the application of NLLVsin
the identification of the sensitive regions with fast error
growth and the generation of initial ensemble perturba-
tions for capturing case-dependent analysis errors.

The rest of the paper is structured as follows. Section 2
introduces the numerical model and the methods asso-
ciated with BVs and the NLLVs used in this paper. The
flow of the experimental design is described in section 3.
Results and their analysis are found in section 4, while
section 5 offers some conclusions and a discussion.
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2. Model and methods
a. Model

The numerical model used in this paper is a
T21L3 quasi-geographic (QG) model (Marshall and
Molteni 1993). This is a global spectral model with
horizontal resolution of T21 (64 X 32) and three
vertical levels corresponding to the 200-, 500-, and
800-hPa pressure levels. The model uses a perpetual
forcing to reproduce the northern winter climatol-
ogy. Although the QG model with 1449 degrees of
freedom (Vannitsem and Nicolis 1997) is relatively
simple compared to NWP models, it is well suited
for this study since it can successfully simulate the
mean large-scale midlatitudes flow, reflecting the
mechanism of baroclinic instabilities important in
forecast error growth (Goodman and Marshall
2002). In other words, the baroclinic instability
could be the main origin of the development of er-
rors and perturbations in this model. The study area
is focused on the mid- and high latitudes of the
Northern Hemisphere (20°-85°N), and the variable
of interest is the geopotential height (GPH) at
500 hPa.

b. Computation of bred vectors

Each BV is generated through similar, independently
run breeding processes, in each of which the differences
between two nonlinear model integrations are evolved
and rescaled periodically:

1) Consider a series of successive reference states
X_ KA X—(K—1)an - - - » Xo, Where At is the length of
breeding cycle and K is the number of cycles. The
negative indices represent the breeding period.
Superpose a small perturbation &_ g, of size A (in an
L, norm) on Xx_gu, and then integrate the perturbed
state X', with the full nonlinear model for At interval
to acquire the forecast state f(x,,, Af). When a
breeding cycle is started, 6_xa, is chosen to be a
random perturbation.

2) Let 5l—(1<—1)m denote the difference between the
perturbed forecast f(x'.,,, Af) and the reference
X_(K—1)As 6L(K71)At is then rescaled to the size A
of the initial perturbation, and the updated pertur-
bation is expressed as

6*(K71)At = 6L(K—1)AtA/H5L(K—1)A;|| s (1)

where ||-|| represents the norm of a vector.

3) Superpose the rescaled perturbation 8 _x—1)a, on the
subsequent reference x_(x—1)a, and repeat steps 1
and 2 for K cycles to x, to derive the BVs.
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Through the dynamical evolution, the decaying,
neutral, and slower-growing components in the initial
random perturbations will be gradually eliminated,
leading to the projection of BVs onto the fastest-
growing directions. Multiple BVs can be obtained by
simply selecting different initial random seeds. The
BVs have dominant projections on the leading LVs
and span the small subspace of the fastest-growing
directions.

c¢. Computation of nonlinear local Lyapunov vectors

The NLLVs are related to the BVs, and computed as
follows:

1) Consider the same series of reference states
X_ga X—(K-1)Ar---,Xo as in section 2b.
Superpose a group of M different perturbations
01— KA O2—KAs - - » Opr—xar With the same size A
on the basic state x_g.a, and integrate the indi-
vidual perturbed states X; g, Xy _gaps- - > Xpy—gar
with the full nonlinear model for At interval to
acquire their respective forecast states f(X; _xy,, Af),
FO5 _ga A1, f(Xyy _gar Af). Again, in the first
cycle of the NLLV algorithm, nonidentical initial
perturbations are chosen arbitrarily.

2) The differences between the perturbed forecasts and
the references at the same valid time — (K — 1)Ar are
denoted by 8,1,—(K—1)Ar7 /2,—(K—1)At7 ) ?\/I,—(K—I)At‘
Without changing the direction of the first perturba-
tion 6’1’,(K,1)A,, we orthogonalize the other pertur-
bations successively using the GSR algorithm? (Wolf
et al. 1985; Li and Wang 2008) and then rescale all of
them to size A as in Eq. (1) to derive the following
perturbations: 61— (x—1)an 02— (k—1)an - - - » OM,—(K—1)Ar

3) Superpose the new perturbations on the reference
state and repeat steps 1 and 2 in a cyclical fashion to
obtain the NLLVs.

The difference between BVs and NLLVs is that while
the former vectors are evolved independently, NLLVs
are periodically orthogonalized through the GSR
method. Specifically, BVs are random samples of
the fastest-growing perturbation, leading to uncertain
performance in spanning the subspace of unstable

2 The reordering of perturbations according to their growth rates
before the application of GSR in Feng et al. (2014) made no sig-
nificant changes in the performance of the MAP-SDEG correla-
tion compared to the direct GSR to the perturbations without re-
ordering and therefore was not applied here. It could be the much
flatter Lyapunov spectrum (Vannitsem and Nicolis 1997) of the
growing subspace in the QG model relative to the three-variable
Lorenz model used by Feng et al. (2014) that weakens the effect of
the reordering on capturing the unstable subspace.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 75

perturbations. In comparison, the orthogonalization en-
ables NLLVs to selectively capture multiple independent
fast-growing perturbations and span the unstable sub-
space with fewer sampling fluctuations. Therefore, NLLVs
give a more systematic description of the subspace of
the fast-growing perturbation directions than BVs.

3. Experimental configuration

It has been demonstrated that the BVs rescaled to
amplitudes corresponding to midlatitude analysis-error
variance are dominated by baroclinic instabilities,
which mainly determine the short-term error
growth of synoptic-scale forecasts (Toth and Kalnay
1997). Since the NLLVs are generated using the
same rescaling factor and length of evolution cycle
as the BVs, the LNLLV has exactly the same prop-
erties as the BVs. Whether the additional, lower-
rank NLLVs are also associated with the dynamical
instabilities and how they describe such instabilities
compared to the BVs are the main issues to be an-
alyzed and clarified in this paper.

The schematic of the experimental setup was shown in
Fig. 1. Simulating a realistic situation, a long series of
successive analysis states generated with a 12-h-cycle
ensemble Kalman filter (EnKF) scheme are used as a
representation of the basic flow for the computation of
BV and NLLYV perturbations (see Fig. 1b) and also as
reference states that the forecasts are compared with
(see Fig. 1a). Each analysis state is the average of 200
EnKF analysis ensemble. The details of the EnKF pro-
cedures are described in appendix A. The practical error
growth of EnKF ensemble forecasts against analyses will
be used to verify the accuracy of BV and NLLV per-
turbations in capturing the flow instabilities. As a
benchmark, the growth of random errors will also be
used in one set of experiments as an alternative to the
more realistic ENKF-produced analysis errors. The
gridpoint initial random errors are drawn from a
Gaussian distribution with a zero mean and a standard
deviation (SD) equal to 5% of the climatological SD of
the QG model, which are then globally rescaled to the
same size (7.5, 5, and 3.75m in an L, norm at 200, 500,
and 800hPa, respectively) as the BV and NLLV
perturbations.

The same number (10) of NLLVs and BVs are gen-
erated for a contiguous period as described in section 2,
with a 12-h rescaling cycle and global rescaling ampli-
tudes of 7.5, 5, and 3.75m (in an L, norm) at 200, 500,
and 800 hPa, respectively, corresponding to about 5%
of the global-mean climatic variability at each level.
The value of 5% was selected because BVs rescaled
with 1%-10% of the natural variability are found
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FIG. 1. Schematics of (a) the computation of forecast errors and (b) the generation of BVs and NLLVs.

closely associated with extratropical baroclinic in-
stability (Toth and Kalnay 1997). To diminish the effect
of the initial random components in BVs and NLLVs,
the first 50 days of cycling were discarded, after which
we study 90 consecutive cases at a 1-day interval
(one season).

We will use the correlation between two metrics, that
is, the mean absolute perturbation (MAP) and the spa-
tial distribution of error growth (SDEG), to evaluate the
relative performance of BVs and NLLVs. Previous
studies have found the BV perturbations and the fore-
cast errors have some similar structures, especially in
some local regions with fast error growth, although they
may have different signs (Toth and Kalnay 1997;
Corazza et al. 2003; Newman et al. 2004; Yang et al.
2009). MAP and SDEG are defined as somewhat mod-
ified forms of the generally used dynamical perturba-
tions and forecast errors, respectively. Since our aim
here is to quantify the correlation relationship between
the fields of perturbations and error growth, the absolute
perturbations instead of the original ones are used (i.e.,
the MAP) to estimate the instabilities. As a reference
for evaluating the instabilities, the error growth (i.e., the
SDEG) instead of the forecast error is used since the
former is more directly related to instabilities and was
found to have higher spatial correlation with MAP of
both BVs and NLLVs than the forecast error amplitudes
in our study (not shown). The MAP of BVs and NLLVs
at valid time ¢ denoted by u, are calculated by

“ )M, )
where p,; = abs(6,;) (i = 1,2, ..., M), and 8,; is the ith
BV or NLLV in order at time ¢ (red solid lines in Fig. 1b),
and abs(-) means all gridpoint perturbations converted
to absolute values. Generally, one randomly selected
BV is already sufficient to indicate the instabilities be-
cause of their similarities (Corazza et al. 2003), though
the use of a larger sample may reduce sampling fluctu-
ations. Here, the same number of BVs as the NLLVs is
used for a fair comparison.

The SDEG at valid time ¢ denoted by d, is simply
measured as the increment of absolute errors in 1 day,
namely

u = (pt,l TP, t

d, =abs(e_ ) —abs(e__,, ), 3)
where e, and e, _,,, are both forecast error fields valid
at time ¢ and 1 day before ¢, respectively. Specifically,
e,=F,— A e, 5 =F,. o1, — A, where F, and F,_,,,
are the forecasts with lead times 7 and 7 — 2At (At =
12h) from the same initial state and A is the corre-
sponding analysis field. In the experiment with EnKF-
produced analysis errors, the forecasts are initiated from
the EnKF analysis members, and SDEG is computed for
the first day (7 = 24h), while in the experiment with
random initial errors, forecasts are started from ran-
domly perturbed conditions, and SDEG is calculated
from 2 to 3 days (7 = 72h) after an initial spinup. The
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FIG. 2. (a) The SDEG of random initial errors within 1 day and the MAPs generated by combining five (b) BVs and (c) NLLVs at the
same valid time in one randomly selected case. The spatial correlations between (a) and (b) and between (a) and (c) are 0.37 and 0.54,

respectively.

SDEG investigated in the above two scenarios are
within the approximately linear error growth stage. To
reduce sampling noise, for each case, SDEG is com-
puted by averaging the error growth in 200 different
ensemble forecasts initiated at the same time. We will
use the pattern correlation between MAP and SDEG at
the same valid time ¢ as an indicator of how well a type of
perturbation (BVs or NLLVs in our case) captures the
instability of flow and the behavior of errors.

4. Results
a. Growth of random perturbations

In the first experiment, forecasts are initialized with
arbitrarily generated initial errors superposed on EnKF
analysis to assess the efficiency of BV and NLLV per-
turbations to describe forecast error growth. To reduce
the effect of noise in the random initial errors, SDEG is
computed between day-3 and day-2 forecasts instead of
day-1 and day-0 conditions (but valid at the same time
for which the BVs and NLLVs are generated).

Figure 2 shows the SDEG (Fig. 2a) and the MAPs
captured by five randomly selected BVs (Fig. 2b) and the
first five NLLVs in a randomly selected case (case 1;
Fig. 2¢). As seen from Fig. 2a, SDEG of 500-hPa GPH
exhibits large-scale zonally oriented patterns possibly
associated with the eddy activity concentrated in storm-
track regions (Buizza and Palmer 1995; Vannitsem and
Nicolis 1998), which suggests that the baroclinic in-
stabilities could be the source of the major forecast un-
certainties. The MAPs in Figs. 2b and 2c also appear to
follow wavelike patterns. Many areas of strong instability,
indicated by local BV MAP maxima, correspond with

areas of fast forecast error growth; see as examples the
highlighted areas over 1) the Caspian Sea, 2) the mid-
latitude central Pacific Ocean, and 3) southern Green-
land. It is noteworthy that the NLLV M AP is also capable
of catching these unstable regions as shown in Fig. 2c.
Moreover, the NLLV MAP better specifies the relative
strength of the forecast error growth over these three
regions (region 2 > region 3 > region 1). Although the
BV MAP exhibits the strength of some local error growth
more accurately than the NLLVs, like East Asia, the
latter (0.54) has an overall higher pattern correlation with
the error growth structure than the former (0.37). The
results indicate that in addition to the LNLLYV, the other
leading NLLVs may also be related to the dynamical
instabilities. Furthermore, a set of the leading NLLVs
appear to capture more robustly the dynamics underlying
forecast error growth than a similarly sized set of BVs.

To obtain statistically reliable results, for this case, we
repeated the generation of BVs and NLLVs 100 times,
using different initial random seeds. Figure 3 shows their
comparison of the SDEG-MAP correlation in each
sample. In 92 samples, the NLLV scheme has higher
correlation than the BV scheme. The NLLVs have
higher sample-mean correlation (0.52) and lower SD
(0.034) than those of the BVs (0.44 and 0.039) and the
difference between their mean values is statistically
significant (P < 0.01), which demonstrate the more
stable performance of the NLLV MAPs in revealing the
SDEG compared to the BVs.

Figure 4a compares the pattern correlation between
the SDEG and the MAPs of the BV (black) and NLLV
(red) schemes averaged over all 90 cases as a function
of the number of perturbations used. When only one
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FIG. 3. The spatial correlation between the SDEG of random
initial errors and the MAPs derived from five BVs and NLLVs in
the same case as Fig. 1 but repeated for 100 times with BVs and
NLLVs generated from different initial random seeds. The mean
correlations and the SD of the 100 samples are 0.44 and 0.039 for
the BV scheme and are 0.52 and 0.034 for the NLLV scheme. It has
92 (92%) cases where the NLLVs have higher correlation than
the BVs.

perturbation is used, since the leading NLLV and any
BV, by definition, are generated the same way, the re-
sults are virtually identical. With an increase in the
number of perturbations used, both the BVs and NLLVs
display a better performance in terms of explaining the
spatial distribution of error growth and exceed the 0.01
significance level,’ though beyond five perturbations,
their performance levels off. However, NLLVs out-
perform BVs, and ever more so with larger number of
perturbations. Figure 4b presents the percentage of ca-
ses in which the NLLVs gained a higher SDEG-MAP
correlation than the BVs as a function of number of used
perturbations. Except for the same performance with a
single perturbation, in the majority of cases, NLLVs
perform better, in even more than 80% cases from
numbers 6 to 10. These results indicate that the in-
dependent information in a set of NLLVs carry useful
information regarding error evolution beyond what the
BVs provide.

3The score of the 0.01 significance level (close to 0.3) is lower
than the generally used value of 0.6 in operational forecasts, be-
cause the model effective spatial degree of freedom and the veri-
fied variables (the former is 500-hPa GPH, while the latter is its
forecast error growth) are different.
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b. Growth of EnKF ensemble perturbations

In reality, analysis errors are not random since NWP
initial states optimally combine short-range model
forecasts with observations. Correspondingly, in a more
realistic context, we used EnKF initial ensemble per-
turbations, usually regarded as reliable estimates of
analysis uncertainty, as a proxy for analysis errors when
initializing NWP forecasts (i.e., the analysis considered
as the “truth”). For each of the 90 cases studied above,
SDEG is calculated by averaging the amplification of all
200 EnKF ensemble perturbations.

Figure 5 shows the SDEG (Fig. 5a) and its corre-
sponding BV (Fig. 5b) and NLLV MAPs (Fig. 5c) for the
same case as Fig. 2. The areas with positive error growth in
Fig. 5a are overall larger than in Fig. 2a because the latter
has more transitional behavior of initial errors due to
more random noises in analysis errors (Trevisan and
Legnani 1995). Similar to the results in Fig. 2, the regions
with fast error growth are related to the localized unstable
perturbations in both the BV and NLLV modes, and
again, the order of the forecast error growth over the re-
gions 1-3 is better simulated by the NLLVs than the BVs.
Correspondingly, the NLLV mode (0.52) has higher cor-
relation with the SDEG than with the BV mode (0.27).

The mean SDEG-MAP correlation for all 90 cases
as a function of number of perturbations is shown in
Fig. 6a. As in Fig. 4a, the correlation increases with the
number of perturbations. While the correlation for BVs
appear to saturate at a value around 0.4 correlation, the
correlation for NLLVs are higher (up to 0.5). We also
compared the EnKF analysis ensemble perturbations
(differences between the EnKF initial ensemble and
their average) with the BVs and NLLVs at the same
valid time in terms of estimating SDEG (blue line in
Fig. 6a). The correlations between the EnKF analysis
ensemble perturbations and SDEG increase with the
number of used perturbations but perform overall worse
than the BVs and NLLVs. In the DA cycle, the EnKF
analysis ensemble perturbations are generated by
transforming the EnKF background forecast perturba-
tions, which, like the BVs and NLLVs, point to the di-
rections of instabilities during the forecast phase.
However, the ingestion of observations in the DA step,
although it improves the accuracy of EnKF initial per-
turbations in representing the uncertainties in analyses,
introduces random noises (or stable components) to the
initial perturbations (Toth and Kalnay 1997; Hamill
et al. 2002; Pefia et al. 2010). The performance of EnKF
analysis perturbations in manifesting the instabilities is
thus degraded. Figure 6b compares the SDEG-MAP
correlation score for the BV and the NLLV methods
with different number of perturbations averaged over
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FIG. 4. (a) The spatial correlation between SDEG of random initial errors and MAPs
derived from 1 to 10 BVs (black solid line) and NLLVs (red solid line) averaged over all 90
cases as a function of the number of perturbations used. The black and red dashed lines
represent their respective 0.01 significance levels for the correlation. (b) The percentage of
cases in which the NLLV scheme has higher SDEG-MAP correlation than the BV scheme as
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a function of the number of perturbations used.

the 90 cases. With EnKF initial errors, NLLVs perform
even better, outperforming BVs in close to 90% of the
cases with eight or more perturbations (cf. Figs. 6b and
4b with random initial errors).

The difference between NLLV and BV correlation
values with SDEG for M = 5 perturbations for the 90
individual cases is shown in Fig. 7 (black line). In-
terestingly, the case-to-case variability in the compara-
tive performance of MAPs in predicting changes in
forecast error (SDEG) is closely correlated (r = 0.83,
significant at the 0.01 level) with the difference in the
variance explained in error amplification (SDEG) by the
two types of MAPs (red curve in Fig. 7). The latter
quantity is defined similarly to the perturbation versus

(a) Error growth structure

I I
0 05 1 15 2 25 3 35 4

(b) BV absolute pert

error correlation analysis (PECA) proposed by Wei and
Toth (2003). Specifically, if P' = (p}, p5, ..., p},) are
the standardized perturbations (with L, norm 1) of
P1, P2, - - - » Pm, Where M = 5, the projection of the SDEG
d on the subspace of perturbations py, p», . . . , pa can be
derived by q = P'P'"d, where the superscript T repre-
sents the transpose of a matrix. The variance of d pro-
jected onto the ensemble perturbations (i.e., explained
variance) is then calculated by the square of the corre-
lation between d and q. It is also notable that while BVs
outperform NLLVs in 18 out of the 90 cases in terms of
the correlation metrics, they do so only in 14 cases
when compared in terms of explained error variance.
These results once again demonstrate the advantage of

(c) NLLV absolute pert

2 3 4 5 6 7

FIG. 5. Asin Fig. 2, but the EnKF ensemble perturbations are used as initial errors to estimate the SDEG. The spatial correlations between
(a) and (b) and between (a) and (c) are 0.27 and 0.52, respectively.
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FIG. 6. As in Fig. 4, but the EnKF analysis ensemble perturbations are used as initial errors
to estimate the SDEG. The performance of MAP derived from EnKF analysis ensemble
perturbations is also shown (blue line in Fig. 6a).

NLLVs over the BV MAPs in imitating the SDEG now
in a more realistic experimental environment, with
EnKeF initial errors.

c. Independence of NLLV and BV perturbations

The higher variance of SDEG that NLLVs can ex-
plain as compared to BVs may be related to the larger
subspace of growing perturbations spanned by the
NLLVs because of their orthogonality at the initial time.
Other things being equal, more uncorrelated and in-
dependent growing perturbations are more likely to
capture the comprehensive properties of instabilities
manifested in SDEG. Here, the explained variance of
the eigenvectors of the covariance matrix of ensemble
perturbations is used to evaluate the dependence in a set
of perturbations. Specifically, for ensemble perturba-
tions A = (81, 85, ..., 8)), the covariance matrix can be
written as R = AAT. We use an empirical orthogonal

function analysis to solve for eigenvalues Ay, Ay, ..., Ay
0.3 - - - - - - - - 30
=4
0.2 20 =
£ 2
o ®
f_’ 0.1 F10 o
o
-
8 8.
§ 0 o 8
£ g
5 <
-0.1 e NLLV=BV(Prjvar) —10i
——e NLLV-BV(Corr) S
-0.2 -20

10 20 30 40 50 60 70 80 90
Case number

FIG. 7. The differences (black) between the SDEG-MAP cor-
relations of the BV and NLLV schemes and the differences (red)
between the percentages of the projected variances of SDEG on
the subspace of the BV and NLLV absolute perturbations. Their
correlation over all 90 cases is 0.83, which is significant at 0.01 level.

of R to calculate the explained variances p; as
M
Pi :/\i/<2i:1/\i :

As seen from Fig. 8, the first five NLLVs exhibit a
closer to uniform distribution® of explained variance as
compared to five randomly chosen BVs® averaged over
all 90 cases. In other words, NLLVs span the local phase
space of growing directions with more diverse pertur-
bations than do the BVs. This larger diversity makes
NLLV MAP a better predictor of changes in analysis-
error magnitude that is dynamically driven by multiple
growing instabilities compared to the more correlated
BVs, as revealed in sections 5a and 5b.

d. Local dimension of BVs and NLLVs

Patil et al. (2001, 2003) proposed an algorithm for the
calculation of the local dimension to assess the de-
pendence of perturbations over local regions. Moreover,
they found that the local dimensions of BVs are related
to the dynamical instabilities of error development.
Specifically, over the regions with stronger instability,
the perturbations exhibit more consistent tendency to
concentrate and thus have more converged directions
and lower local dimensions. The impact of the global
orthogonalization of NLLVs on the characteristics of
local perturbations can be investigated by compar-
ing the local dimensions to those of BVs. Using
Patil et al.’s (2001) algorithm (see more details in

*Note that since they are globally orthogonalized, over the
Northern Hemisphere, the NLLV perturbations do not present a
totally uniform distribution of explained variances.

> The original BV and NLLV perturbations with signs are used
here instead of the absolute perturbations since the latter are in
comparison more correlated overall; however, they have a similar
relative performance of the dependence.
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variance matrix of five BV and NLLV perturbations over the
Northern Hemisphere averaged over all 90 cases.

appendix B), here, we compare the dimension of five
local BV and NLLV perturbations in 5 X 5 grid boxes
centered at each grid point at 500 hPa.

Figure 9 shows a comparison of the distribution of the
local dimensions of five BVs and NLLVs in case 1 (the
same case as in Figs. 2 and 5). As seen in Fig. 9a, the local
dimensionality of BVs and NLLVs are spatially weakly
correlated at the 0.47 level. This is a typical example as
the mean of the correlations taken over all 90 cases is
0.45. At the majority of grid points, however, the local
NLLYV dimension is higher than the local BV dimension
(see Fig. 9b). This is true for the other cases as well. As
seen in Fig. 10, the number of cases with higher NLLV
than BV dimension exceeds 90% over three-fourths of
the domain considered. The higher NLLV dimension is
due to the global orthogonalization of the NLLVs and is
an indication of more independent perturbations in
the NLLVs.

Applying a method similar to that used by Toth and
Kalnay (1997; see their Fig. 4 and Table 1), we investigate
the difference between how individual BVs and NLLVs
reflect regional instabilities. In particular, Table 1 tabu-
lates the presence or lack of a local maximum or mini-
mum in five BVs and NLLVs (Fig. 11) over selected
regions of fast error growth (see areas A, B, C, and D).

The results in Fig. 11 and Table 1 confirm Toth and
Kalnay’s (1997) finding that in areas of fast perturbation/
error growth, independently cycled BVs reproduce the
nonlinearly fastest-growing perturbations and that these
regional patterns are combined with arbitrary signs in
individual global BVs. BVs naturally combine pertur-
bations from regions with the strongest (i.e., fastest-
growing perturbations) and less-strong instabilities,
offering a sampling of the fastest-growing perturbation
from each unstable region, with random signs. Of the 20
cases (4 selected regions times 5 BVs), only in 2 cases did
the BVs have no pronounced local perturbation. This is
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in contrast with 11 such cases for the NLLVs. The or-
thogonalization of NLLVs separates perturbations ac-
cording to their growth rates. Given the strength of
instabilities supporting regional perturbation growth
varies from region to region, the NLLV procedure also
has a geographically selective effect on the vectors: in
case 1 studied here, the first two NLLVs, for example,
tend to peak in areas C and D, while the lower-ranked
perturbations frequent areas A and B. In this respect,
NLLVs like linear LLVs and SVs that, because of the
simpler linear dynamics, are even more clearly sepa-
rated geographically (Buizza and Palmer 1995). These
results suggest that to simulate the uncertainties of local
analysis errors, individual NLLVs, like SVs (Molteni
et al. 1996), should not be used directly as ensemble
perturbations but rather in a linear combination with
other NLLVs. Additionally, the growing components in
analysis errors may be randomly located in the unstable
subspace spanned by NLLVs and thus should be better
sampled by the linear combination of NLLVs.

5. Discussion and conclusions

The abilities of bred vectors (BVs) and nonlinear local
Lyapunov vectors (NLLVs) to predict forecast error
growth is compared. Both BVs and NLLVs are gener-
ated by cycling nonlinear perturbations along a real or
proxy trajectory of a system, the difference being that
the NLLV procedure involves the periodic application
of a Gram-Schmidt orthogonalization step. With such a
step, the spectrum of leading NLLVs contains the
fastest-growing nonlinear perturbation at a given per-
turbation amplitude and a set of subsequent perturba-
tions with the fastest growth orthogonal to previous
elements. When the performance of the first few NLLVs
and a similarly sized set of randomly chosen BVs are
compared, we find that NLLVs can better predict the
spatial structure of forecast error growth.

The result is closely related to the interdependence
between BV or NLLV perturbations. Generally, the
growing components of analysis errors are randomly
located within the subspace spanned by various most
unstable perturbations (Buizza et al. 2005), which may
be more comprehensively and specifically simulated by
independent NLLVs than the same number of BVs.

It is well known that localized structures in BVs with
amplitudes characteristic of error variance in today’s
analyses correspond to dynamical instabilities. In this
paper, NLLVs successive to the leading NLLV (or BV)
were found to exhibit similar properties. As expected,
the local dimension of a set of NLLVs exceeds that of a
similarly sized set of BVs, while spatial variations in the
two local dimension fields are correlated.
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FI1G. 9. (a) The distribution of the local dimensions of five BV (shaded) and NLLV (contour) perturbations in the same case
as in Figs. 2 and 5. Their spatial correlation is close to 0.47. (b) The difference of the NLLV from the BV local dimension.

The wide-ranging application of BVs in the genera-
tion of initial ensemble perturbations is due to their
conceptual simplicity, low computational cost, and
foremost, their ability to sample the growing modes to-
ward which any perturbation, including the analysis er-
rors, will develop. BVs, however, are not orthogonalized
and, therefore, as shown in this study, span a smaller
subspace than a similarly sized set of NLLVs, both
globally and regionally. This may explain why NLLVsin
our experiments outperform BVs in explaining the de-
velopment of forecast errors. NLLVs, or ensemble

FIG. 10. Percentage of the cases with a higher local dimension for
the first five NLLV perturbations than that for the same number of
BV perturbations at each grid point.

transform (ET) perturbations as Wei et al. (2008) call
them, were also found to improve forecast skill, pre-
sumably because of their more efficient sampling of
analysis errors. In potential application to ensemble
forecasting, the NLLVs, instead of the global rescaling,
can be locally rescaled with an estimated gridded field of
analysis-error variance to better represent the un-
certainties of analysis errors in local regions. Addition-
ally, the local perturbations of NLLVs are in good
agreement with instabilities and thus could be used to
identify the regions with potential fast error growth and
how errors propagate, which are critical steps before
deploying targeted observations. Further studies of the
properties and performance of NLLVs with complex
NWP models may provide additional insight into at-
mospheric instabilities and the optimal use of NLLVs in
various applications.

TABLE 1. Presence (+1 for maximum; —1 for minimum) or lack
(0) of local extremum over domains A-D for the five BV and
NLLYV perturbations in Fig. 11.

Pert1 Pert2 Pert3 Pert4 Pert5 Count
A BV -1 +1 0 -1 -1 4
NLLV 0 0 0 1 0 1
B BV +1 -1 -1 +1 +1 5
NLLV 0 0 1 1 1 3
C BV +1 -1 +1 +1 +1 5
NLLV 1 0 0 0 1 2
D BV -1 +1 -1 +1 0 4
NLLV 1 1 0 0 1 3
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FI1G. 11. The spatial patterns of five (a) BV and (b) NLLV perturbations over the Northern Hemisphere (20°-85°N) for case 1 studied in
Figs. 2, 5, and 9.
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APPENDIX A

The Ensemble Kalman Filter

We integrate the QG model for an extended time
period to obtain a long series of true states x'. Simulated
observations y are generated by superposing random
perturbations ¢ on truth:

y=Hx'+¢, (A1)
where H is an operator that projects the states from the
model space to the observation space and ¢ is the ob-
servation errors of GPH (m). Following Houtekamer
and Mitchell (1998), ¢ are obtained from the covariance
matrix:

260 80 20
T
R = (2300: 500> £00) (82001 &500+ E500) = ( 80 80 20) )
20 20 30
(A2)

where T represents the transpose of a matrix. The ob-
servations are available every 12h and exactly at the
same valid time as the 12-h background forecast. If the
ensemble matrix is defined as
X = (x{,xé,...,xﬁ,), (A3)
where the ensemble background forecasts are denoted
by x,f , with N = 200, then the ensemble perturbation
matrix can be expressed as
X'f:(x{—x_f,xé—g,...,x{\,—g), (A4)
where x/denotes the arithmetic mean of the ensemble.
The background covariance matrix of the ensemble X’
can be calculated as
1
P/ = _—X/X'". AS
N-1 (AS)
The set of y; (i = 1, 2,..., N) represent a group of
perturbed observations that corresponds to each pre-
vious ensemble forecast x{ . They are defined as

Y, =Yy*tes. (A06)

The random perturbations ¢; follow the same co-
variance matrix as & The analysis state is updated by
combining the observation y; with x{:

x! = x{ + K(y; - Hx{ . (A7)

The Kalman gain K is calculated by
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K=PH'(HP'H" +R) . (A8)

Note that Kis actually a weighting measuring the ratio
of the forecast and observational error covariance,
which determines to what extent the background fore-
casts will be corrected to fit observations.

To avoid filter divergence due to undersampling and
other issues, an inflation factor of 1.3 is applied to X”. No
covariance localization is used here since the 200 ensemble
members filter out the bulk of spurious long-distance cor-
relations that would be present with a smaller ensemble.
The mean x? of the analysis ensemble x¢ (i = 1,2,...,N)is
considered as the analyzed state used to initialize forecasts.

APPENDIX B

Local Dimension of Perturbations

The algorithm of the local dimension follows Patil
et al. (2001). For a model field with uniformly distrib-
uted grid points, we consider a roughly square region of
L X L with a gridpoint G in the center, where L is the
number of grid points (L = 5 in our case). The L X L
grid points of ensemble perturbation 8; (i = 1,2, ..., M)
at one level form a local vector denoted by ¢;; M local
column vectors then construct an M X N matrix (N =
L X L),C=(c,c¢y,...,cy). The M X M covariance
matrix of C is @ = C'C, where C" is the transpose
of C. By using the empirical orthogonal function
analysis to matrix Q, the singular values (square root
of eigenvalues) can be computed and ordered by
o1 =0,= ... =0y. Then the local dimension over the
region centered at gridpoint G can be derived by de-
fining the following statistic on the singular values:

Wo,0,,...,0,)= (B1)

The local dimensions for other regions can be similarly
calculated.
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